
 Page 1/10

An Interactive System Level Simulation Environment for Systems-
on-Chip

Daniel Knorreck, Ludovic Apvrille, Renaud Pacalet

System-on-Chip Laboratory (LabSoC)
Institut Telecom, Telecom ParisTech, LTCI CNRS

Route des Cretes BP 193, F-06904 Sophia Antipolis, France

Abstract: This article presents an interactive
simulation environment for high level models
intended for Design Space Exploration of Systems-
On-Chip. The existing open source development
environment TTool supports the MARTE compliant
UML profile DIPLODOCUS and enables the
designer to create, simulate and formally verify
models. The goal is to obtain first performance
estimations of the system intended for design while
minimizing the modeling effort. The contribution
outlined in this paper is an additional module
providing means for controlling the simulation in real
time by performing step wise execution, saving and
restoring simulation states as well as animating UML
models of the system. Moreover the paper
elaborates on the integration of these new features
into the existing framework consisting of a simulation
engine on the one hand and a graphical user
interface on the other hand.

Keywords: System-on-Chip, Design Space
Exploration, UML, Simulation, Interactive, HW/SW
partitioning, DIPLODOCUS

1. Introduction

A System-on-Chip can be defined as a set of
communicating electronic components integrated
into one single chip. The latter components are
highly heterogeneous in nature: digital, analog and
mixed signal components may be interconnected to
make up complex systems ranging from mobile hand
sets and set top boxes to automotive controllers and
feedback control systems for rail cars. Due to recent
advances in the field of semiconductor physics,
higher and higher integration densities are achieved
so that a given piece of silicon accommodates more
and more transistors.

In order to make use of the available resources, the
complexity of embedded systems and Systems-on-
Chip has been increasing rapidly. On the one hand,
users are demanding products exhibiting
sophisticated features which are reliable, easy to use
and affordable. On the other hand, the gap
increases between integration and designer
efficiency due to inadequate tools and

methodologies. In addition to the increased demand
of functionality, time-to market is an issue of great
concern. Hence, developers are facing significant
difficulties due to an exponentially raising complexity.
It becomes more and more unlikely that an optimal
design represents an intuitive solution, thus the
experience of the designer may not lead him/her to
optimal designs with respect to functional and non-
functional requirements such as performance, size,
energy consumption, reliability.

Thus, given a particular functionality and associated
requirements, the design space is considered as
representing all functionally equivalent
implementation alternatives. Being almost infinitely
large at the very beginning of the design flow, the
design space should be gradually reduced during
the design process by refining the model of the
system. The analysis of systems at low abstraction
levels exhibits a high degree of accuracy but comes
with the downside of being demanding and slow.
Traditional simulation techniques operating at
register transfer level (RTL), instruction or
transaction level are not appropriate for system level
Design Space Exploration (DSE) for two reasons:
• Only a very limited number of implementation

alternatives can be examined due to the high
modeling effort and extensive simulation
runtime.

• The lack of specification at early design stages
may prohibit the construction of detailed models
- even if the effort was acceptable.

Thus, abstractions are the key to success in
performing System Level Design. In this context, we
have previously introduced a UML-based
environment named DIPLODOCUS. The strength of
our approach relies on formal verification capabilities
and fast simulation techniques ([2] [3]).
DIPLODOCUS design approach is based on the
following fundamental principles:
• Use of a high level language (UML)
• Clear separation between application and

architectural matters
• Data abstraction

 Page 2/10

• Use of fast simulation and formal static analysis
techniques, both at application and mapping
levels

The designer is supposed to model in an orthogonal
fashion the application and the architecture of the
targeted system. Thereafter, a mapping stage
associates application and architectural components.
The strength of our approach relies in simulation and
formal proofs techniques that can be applied to
modeled systems at all methodological stages. UML
application models can be simulated with
respect to the underlying hardware, as opposed
to state of the art UML model simulators which
operate on a purely functional level. Feedback from
the simulation is directly visualized within the
application model by for instance highlighting the
currently executed operators. This feature paves the
way for getting an intuitive insight into the behavior
of application models on different hardware
architectures. Simulation states may be saved and
restored so as to explore several possible
executions and branches of non-deterministic
decision operators can be explicitly selected by
the user. Also, our environment totally hides
knowledge of simulation or formal proofs techniques:
knowledge of our UML profile is the only asset for
engineers. Today, this methodology is supported by
an open-source toolkit named TTool [4].

The paper is organized in 6 sections. Section 2
surveys related work in the field of System Level
Modeling and UML model simulation. Section 3
elaborates on the DIPLODOCUS methodology and
its tooling. Section 4 details the simulation strategy
which is embedded into the development
environment TTool. Section 5 gives insights into the
features and the technical realization of the
interactive simulation environment. Section 6 finally
concludes the paper and draws perspectives of
future work.

2. Related Work

Some of the current state of the art UML modeling
tools ([5], [6], [7], [8] amongst others) exhibit
simulation capabilities. Simulations can only be
performed based on purely functional models in an
untimed fashion. Our interactive simulator however
also accounts for architecture semantics like
arbitration of shared resources, speed or data
throughput of devices, etc. Furthermore, the
execution behavior of models is tool dependent as
the UML standard lacks an execution semantics.
The DIPLODOCUS profile however fills that
semantic gap and thus also paves the way for formal
verification.

Related work in the field of system level modeling
and simulation often suffers from one of the following

problems: Off the shelves solutions like [10] and [9]
mostly do not permit an orthogonalization of
functionality and architecture. Detailed RTL models
of HW components and the final software code must
be at hand to perform co-simulation. For instance,
Instruction Set Simulators are often used to estimate
the impact on performance of software execution on
a specific processor. Thus, only little abstraction may
be applied to communication (SystemC TLM [11],
etc) and computations. Some academic approaches
enable the design of distinct models for architecture
and application ([12], [13], [14], [15], [24]). In this
case, the level of abstraction is often not pushed
high enough to explore a representative subset of
the HW/SW design space in a reasonable time.
Sometimes application models do not exhibit
data/functional abstractions. In other cases, the
simulation strategy does not leverage abstractions
and models have to be refined before being
executable. For instance, [23] bears resemblance
with our approach with respect to the modeling
methodology where UML is applied for architecture,
application and mapping models. As opposed to our
framework, the focus is put on streaming
applications exhibiting only occasional control
messaging and branching. For this reason, the
semantics of Kahn Process Networks has been
adopted for application models. Simulation is carried
out on SystemC TLM level, thus it does not leverage
all abstraction applied at the modeling stage.

Analytical approaches like [21] and [16], [22] rely on
the classical methods for real-time scheduling
analysis to determine characteristics of distributed
systems. The behavior of the environment is
modeled by means of standard event arrival patterns
including periodic and sporadic events with jitters or
bursts. The main contribution is the extension of the
scope of well-known scheduling theories for mono-
processors. Event streams are propagated among
resources of distributed systems in a way that each
resource may be analyzed separately with classical
algorithms. However, the applicability of scheduling
theories requires the task model to be simplistic and
thus it merely reflects best case and worst case
execution times. Control flow within tasks cannot be
considered at all. It may be tedious if not impossible
to model tasks exhibiting a data dependent or
irregular behavior.

The DIPLODOCUS environment however relies on
data and functional abstractions to leverage fast
simulation techniques. Nevertheless, the application
model captures different control flow branches and
explicitly models indeterminism. The latter property
enables the developer to smoothly vary the coverage
of the model during simulation. Explicit
indeterminism also makes model amenable to both
formal verification.

 Page 3/10

3. The DIPLODOCUS UML Profile and Tooling

DIPLODOCUS is a UML profile targeting the design
of Systems-on-Chip at a high level of abstraction. A
UML profile customizes UML [17] for a given
domain, using UML extension capabilities.
Furthermore, a UML profile commonly provides a
methodology and is supported by a specific toolkit.

3.1 Methodology

DIPLODOCUS follows the Y-Chart methodology [26]
and is therefore characterized by the following three-
step design flow (see Figure 1):

• Applications are first described as a network of
abstract communicating tasks using a UML class
diagram. The latter represents the static view of
the application. Each task behavior is described
with a UML activity diagram.

• Targeted architectures are modeled
independently from applications as a set of
interconnected generic hardware nodes. The
latter may be parametrized to exhibit a more
specific behavior. UML nodes were defined to
model HW elements (e.g. CPUs, buses,
memories, hardware accelerators, bridges).

• A mapping process defines how application
tasks can be bound to execution entities and
also how abstract communications between
tasks are assigned to communication and
storage devices.

Figure 1: Global view of the Design Space Exploration
methodology

Within a SoC design flow, Design Space Exploration
is supposed to be carried out at a very early stage.
Hence, the main DIPLODOCUS objective is to help
designers to spot a suitable hardware architecture
even if algorithmic details have not yet been
stipulated thoroughly. To achieve this,
DIPLODOCUS relies (i) on fast simulation and
formal proof techniques, both at application and
mapping level, and (ii) on application models clearly

separated from architecture models (also referred to
as Y-Chart approach [18]). Due to the high
abstraction level of both application and architecture
models, simulation speed can be increased
significantly with regards to simulations usually
performed at lower abstraction level (e.g. TLM level,
RTL level, etc.). Additionally, efficient formal static
analysis techniques may be applied before and after
mapping [25].

3.2 Application Modeling

An application model is the description of functions
to be performed by the targeted SoC. As it merely
stipulates a partial ordering of actions, a refined
execution semantics is introduced at the mapping
stage. One has to bear in mind that, at application
modeling level, computations and communication
are accounted for by abstract cost operators. The
time it takes to process the latter can only be
resolved with the aid of parameters which are
annotated to the architecture model. Abstract cost
operators entail two kinds of abstractions which
reflect the degree of uncertainty inherent to early
design stages:

• Data abstraction: Only the amount of
transferred data is taken into account, not the
data itself.

• Functional abstraction: Algorithmic details are
abstracted by means of their complexity
operators.

As mentioned before, functions are modeled as a set
of abstract tasks described within UML class
diagrams. Task behavior is modeled using UML
activity diagrams which are built upon the following
operators: control flow and variable manipulation
operators (loops, tests, assignments, etc.),
communication operators (reading/writing abstract
data samples in channels, sending/receiving events
and requests), computational cost operators and
delay operators. This section briefly describes a
subset of the aforementioned operators as well as
their semantics and provides definitions for
Channels, Events and Requests:

Channels are characterized by a point-to-point
unidirectional communication between two tasks.
The following Channel types exist:

• Blocking Read/Blocking Write (BR-BW)

• Blocking Read/Non Blocking Write (BR-NBW)

• Non Blocking Read/Non Blocking Write (NBR-
NBW)

Events are characterized by a point-to-point
unidirectional asynchronous communication between
two tasks. Events are stored in an intermediate FIFO
between the sender and the receiver. This FIFO may

 Page 4/10

DIPLODOCUS Application

TML

DIPLODOCUS Architecture

TARCHI

DIPLODOCUS Mapping

TMAP
Modeling

TML Intermediate Format
TMAP Intermediate

Format

Simulation code
(SystemC, C++)

UPPAAL

LOTOS

LOTOS

Simulation code
(SystemC, C++)

Verification

Bisimulation

Static
Simulation

Library

Static
Simulation

Library

Figure 2: Modeling and verification capabilities of TTool

be finite or infinite. In case of an infinite FIFO,
incoming events are never lost. When adding an
event to a finite FIFO, the incoming event may be
discarded or the oldest event may be dropped if the
FIFO is full. Thus, a single element FIFO may be
used to model hardware interrupts. In tasks, events
can be sent (NOTIFY), received (WAIT) and tested
for their presence (NOTIFIED).
Requests are characterized by a multi-point to one
point unidirectional asynchronous communication
between tasks. A unique infinite FIFO between
senders and the receiver is used to store all
incoming requests. Consequently, a request cannot
be lost.

3.3 Architecture Modeling

A DIPLODOCUS architecture is built upon the
following parameterized hardware nodes:

• Computation nodes: Typically, an abstract
CPU model merges both the functionality of the
hardware component and its Operating System.
The behavior of a CPU model can be
customized by the following parameters
(amongst others): data size, pipeline size,
cache miss ratio and scheduling algorithm.

• Communication nodes: A communication
node is either a bus or a bridge. The bus model
exhibits the following parameters: data size,
latency and scheduling policy. Note that links
which are established during the mapping stage
are meant to interconnect a hardware node -
except for buses - with a bus. A link may be
annotated by a priority if the respective bus has

a priority-based scheduling policy.

• Storage nodes: Memories are parametrized by
two measures: latency and data size.

A DIPLODOCUS architecture is modeled in terms of
a UML deployment diagram where DIPLODOCUS
links and DIPLODOCUS nodes are depicted by their
corresponding UML counterparts.

3.4 Mapping of Applications on Architectures

A DIPLODOCUS mapping is meant to describe the
association of application elements - i.e. tasks,
channels, requests and events - and hardware
nodes. Thereby the following rules apply:

• Abstract tasks must be mapped onto exactly
one computation node.

• Abstract communication entities must be
mapped onto communication and storage
nodes. For the time being, the simulation
engine stipulates that a channel is mapped onto
n buses, n-1 bridges and exactly one storage
element. Furthermore, all connected
communication links have to form a continuous
path without loops. A future version of the
simulator should support several memory
elements per channel.

Depending on the mapping semantics, additional
parameters may become necessary. For example,
when mapping a task on a CPU node having a
priority-based scheduling policy, task priorities have
to be defined.

The mapping stage is carried out based on
previously created DIPLODOCUS architecture

 Page 5/10

Task Model

Communication HW

Execution HW

Discrete Event Simulator

Application
Semantics

HW
Semantics

Transaction:
Start Time

Virtual Length [Ex. Units]
Length [Time units]Channel Model

Figure 3: Layered Architecture of the Simulation Environment

diagrams: symbols representing tasks and channels
are simply bound to hardware components in a drag
and drop fashion. An application model captures all
possible interleavings of task activities: the mapping
phase resolves those interleavings which are not
related to non-deterministic operators (choices, time
intervals, etc.). As a consequence, mapping models
have less possible execution traces than application
models

3.5 Toolkit

The DIPLODOCUS UML profile - including its
methodology - has been implemented in TTool [4].
TTool is an open-source toolkit that supports several
UML2/SysML profiles, including TURTLE [19] and
DIPLODOCUS [20]. The main idea behind TTool is
that all models may be formally verified or simulated.
In practice, UML diagrams are first automatically
translated into an intermediate specification
expressed in a formal language, which serves as
starting point for deriving formal specifications and
simulation code (compare Figure 2). Based on the
three building blocks (mapping, application,
architecture), TTool automatically generates
simulation code (C++) or formal specifications at the
push of a button. The module which allows the
designer to control the simulation in real time by
performing step wise execution, saving and restoring
simulation states as well as providing live feedback
to UML diagrams will be elaborated in section 5.

4. The Simulation Strategy

Before going into details, it should be clearly
emphasized what we understand by fast simulation.
Our fast simulation approach is
centered around two basic principles:

• A modeling methodology which
allows for conceiving abstract
application models by applying
both data and functional
abstractions.

• A simulation strategy which
efficiently exploits these
characteristics of the high level
model. The granularity of the
simulation thereby matches the
granularity of the application
model.

This implies that the gain in terms of
simulation speed can hardly be
expressed in cycles per second as it
highly depends on the application
model. Indeed, in theory the simulator
could attain any ratio of cycles/second

if transactions were sufficiently large. But in this case
the respective model would be far from reflecting key
characteristics of the real system for lack of
detailedness. The trade-off between detailedness
and simulation speed is still subject to our research
and can be varied smoothly thanks to the simulation
environment.

When experimenting with models such the one of an
MPEG2 decoder, simulation speed increased by
factor 30 as compared to a cycle-based SystemC
simulator [1]. A car communication application where
we experienced a simulation speed up to 30 times
faster than real time may be also considered as a
rough guide.

The simulator detailed in this paper is transaction-
based. A transaction refers to a computation internal
to a task, or a communication between tasks. Those
transactions may obviously span up to hundreds of
clock cycles. The duration of transactions is initially
defined according to the application model, that is to
say the maximum duration is given by the length of
the corresponding operator within the task model. At
simulation runtime, a transaction may have to be
broken down into several chunks of smaller size, just
because for example, a bus is not accessible and so
the task is put on I/O wait on its CPU. Transaction
cutting is more likely to happen if the amount of inter
task communication is high and hence the need for
synchronization arises. The aggregation of cycles
may slightly impact simulation semantics when
incorrect branch predictions arise on CPUs. The
exact point in time of their occurrence cannot be
resolved and thus the resulting delay is determined
on a per-transaction base.

Unlike a conventional simulation strategy where all
tasks run in lockstep, a local simulation clock is
assigned to each active hardware component. The

 Page 6/10

Application model
(Task behavior)

Data exchange
with simulator

Current position in
task

Application model
operators

Simulation control
panel

Information on
application and

architecture entities

Figure 4: Graphical Interface of the Simulation Environment

simulation clock of a component is advanced upon
reception of a transaction whose length is initially set
to the cost of the corresponding operator defined
within the application model. Thus, the simulation
granularity automatically adapts to the application
granularity. In case the application model is abstract
in the sense of aggregating costs in only few
operators, simulation performance increases
significantly.

The transaction based simulation embraces mainly
three layers (compare Figure 3) representing the
semantics of the application model, the semantics of
the underlying execution platform and finally a layer
dedicated to the discrete event simulation itself. The
topmost layer is subdivided into two parts: the first
one accounting for the computational part of abstract
tasks, the second one for the communication
semantics of abstract channels. Based on the
knowledge of their internal behavior, tasks are able
to determine the next operation which has to be
executed within their scope. The abstract cost of this
command (in terms of computation or
communication units) is subsequently encapsulated
in a transaction data structure. The latter is tagged
with the earliest possible start time (which
corresponds to the finish time of previous transaction
of the task). In case the system is dealing with
communication or synchronization commands,
transactions are forwarded to the dedicated layer for
abstract channels. This layer takes into account
constraints imposed by the channel semantics like

the maximum number of samples to b4e stored, the
blocking behavior, etc.

The hardware layer can be decomposed in the same
manner as the model layer (as depicted in Figure 3):
execution hardware elements (CPUs and hardware
accelerators) and communication elements (bridges,
buses, memories) alter the time stamp of
transactions initially defined at the task layer. The
basic idea is that this timing information is used to
update the internal clock of hardware elements.
Time stamps thus serve as means of
synchronization among the local clocks of hardware
elements. More precisely, on time management,
CPUs have to recalculate the start time of
transactions based on their internal schedule and
they are able to convert the abstract length to time
units. Moreover, a hardware component may delay
transactions and modify their duration according to
the execution time needed by that specific
component. In so doing, the simulation algorithm
accounts for the speed of CPUs, the data rate of
buses, bus contention and other parameters
characterizing the hardware configuration. If several
devices are involved in the execution process,
transactions are simply passed from one device to
another while being modified accordingly. This
procedure is for instance applied if an abstract
channel at application level is mapped onto several
buses and bridges.

 Page 7/10

UML App. and
Architecture model

TTool client

User input

TCP socket TCP socket

Frontend C++ Simulator

Simulator Thread

Server Thread

async.
cmds

Return
value

FIFO for
sync. cmds

Reply in XML
format

Animated model

Reply Request

Modifications Model data

Comprises code dynamically generated
from the graphical model and static codeAutomatic model

transformation

Request in
text format

Scripting

Figure 5: Interaction of the Frontend and the Simulator within the TTool Framework

The final values for start time and duration are hence
determined incrementally by forwarding transactions
to dedicated hardware nodes. Finally, the main
scheduler acts as a discrete event simulator and
assures the causality of the simulation. This is
achieved by simply querying all CPUs for their next
transaction and selecting for execution the
transaction with the earliest finish time.

5. Interactive Simulation Environment

5.1 Usage and features

The above mentioned simulation environment has
been enhanced and it henceforth allows for an
interactive exploration of the application which is
mapped onto a particular architecture. After having
developed the static view of the application in terms
of classes, the behavioral view, the architecture and
the mapping, the developer first checks the syntax of
the models. If the models comply to the constraints
of the meta-model, the next stage is to generate the
C++ counterpart of the graphical model. Once the
sources have been compiled, the interactive
simulation module is launched. All of the
aforementioned stages are accomplished at the
push of a button. No expertise in C++ programming,
simulation or formal verification (in case the model
should be verified) is required. The starting point for
an interactive exploration is hence the window
depicted in Figure 4.

The interface provides the following simulation
commands:

• Different flavors of run commands: a given
amount of transactions, commands or time units
can be simulated...

• …likewise the simulation may be interrupted
when a particular hardware element (CPU, bus,
bridge, memory) or an application entity
(channel) processes a transaction.

• Reset the simulation to the initial state.

• Save and restore the simulation state, especially
useful when several branches of control flow are
to be looked into.

• Simulation traces may be provided in several
formats: the text based format is a simple listing
of all transactions encountered on a hardware
component This format enables the automatic
evaluation of traces and the interchange of data
with other applications. The VCD format is
supported for the sake of compatibility with
standard waveform viewers. The VCD output
basically captures bus states (read, write, idle),
task states (ready, running, blocked,
terminated), CPU states (executing, idle, sleep
mode). For debugging purposes of small
designs, a user friendly HTML output may give
an insight into the application’s behavior.
Transactions are represented on a time line for
each hardware component and colored
according to the task they belong to. Figure 6
and 7 show the available output formats.

 Page 8/10

• Breakpoints can be set graphically on any
command within the UML activity diagram simply
by selecting a dedicated option in the context
menu. Two kinds of breakpoints are supported:
conditional and unconditional breakpoints.
Unconditional breakpoints stop the simulation
whenever the respective command within the
activity diagram is reached. Conditional
breakpoints interrupt the simulation as soon as a
condition is fulfilled which is a function of task
variables.

• Furthermore, commands aiming at obtaining
information about the simulation state and the
state of application and hardware components.
The user is not aware of the existence of these
commands as they merely serve as a vehicle to
convey information to the graphical user
interface.

• Commands may also be supplied directly in text
format, without using the graphical interface at
all. Thus, scripts can be written to automate the
simulation procedure.

TTool encompasses a graphical interface to direct
the simulation (shown in Figure 4) and thus
unburdens the user from familiarizing with a low-
level simulation language. The feedback from the
simulation engine is exploited by the graphical user
interface and used to animate UML application
diagrams. For instance, the current command of a
task is highlighted so that the user is able to closely
follow the simulation progress.

In addition to traces, simulation results comprise
performance figures like the utilization of hardware
elements, the contention delay for bus masters, the

execution time of tasks, the average time a task gets
blocked due to CPU contention, etc (compare Figure
8).

5.2 Technical Issues

As illustrated in figure 5, the simulator and the
graphical user interface embedded in TTool are
hosted in different processes communicating via a
TCP connection. Therefore, the simulator and the
graphical user interface can be run on different
machines for the sake of performance. To get a
better understanding of this interaction, let us now
follow a user request which aims at defining a
breakpoint. The user selects the option by clicking
on the respective command within the UML activity
diagram. In turn, the logic of the graphical user
interface identifies the concerned command and
signals a modification to the TTool client. The latter
may perform additional checks and wraps
information about the command (its ID,…) and the
request into a message in text format. The message
is sent over the network and received by the server
thread of the simulator. The latter distinguishes so
called synchronous and asynchronous requests.
Asynchronous requests may be issued at any time
and normally request information about the
simulation without altering the simulation state.
Asynchronous requests are handled in the scope of
the server thread. Synchronous requests however
directly impact the simulation state and must
therefore be processed in order. Our breakpoint
request is considered as such. Synchronous
commands are carried out by the simulator thread
which reads the FIFO entries one after another. In
case of the breakpoint request, the simulator
updates internal data structures accordingly and
notifies the successful breakpoint insertion to the
server. The server in turn encapsulates the reply into
an XML message and sends it over the network. The
TTool client subsequently interprets the message
and informs the graphical user interface. The latter
provides a feedback to the user indicating that the
breakpoint has been set successfully.

Figure 6: Traces in VCD Format

Figure 7: Traces in HTML Format

Figure 8: Simulation Results

 Page 9/10

As stated previously, conditional breakpoints are
intended to stop the simulation as soon as a
condition (a function of task variables) evaluates to
true. To deal with this kind of breakpoints, the
simulator has to generate a C++ routine first which is
subsequently compiled and attached to the process
in the form of a dynamic library. This procedure
prevents the cumbersome and costly interpretation
of conditions at simulation runtime.

5.3 Usage Scenario

As a simple example, let us consider an algorithm
having two main branches which significantly differ in
terms of execution time and resource usage in
general. For the performance evaluation of a specific
architecture, it would be crucial to try out both
alternatives. Hence, the coverage of the simulation
should be enhanced. As a first step, the designer
could benefit from the various conditional run
commands so as to get a more intuitive view of the
behavior of the application and the interaction of
hardware components. The next step could be to
reset the simulation and to set a breakpoint on the
branch command which is crucial for the
continuation of the simulation. The simulation will
stop at the previously defined choice command
therefore allowing the user to specify which branch
he means to explore. In combination with the feature
of capturing simulation states, complex scenarios
can be evaluated and meaningful traces be
recorded. In our example, the user would certainly
save the simulation state when reaching the choice
command so that it can be restored to study other
alternative executions.

6. Conclusions and perspectives

In conclusion it can be said that the contribution of
this paper is on the one hand the extension of our
simulation environment with a module providing an
interactive control of the simulation procedure. On
the other hand, the new simulation features have
been tightly coupled to our integrated development
environment TTool so that simulation progress is
directly visualized within the UML diagrams
representing the application model. Thus, a powerful
toolbox is provided to the designer which is helpful
when performing Design Space Exploration. It may
alleviate considerably the process of

• Debugging applications

• Accessing intermediate simulation results

• Returning to previous system states

• Enhancing the coverage of the simulation by
exploring several control flow branches.

Trading off accuracy against model complexity of
hardware components will remain subject to our
research. For example, instruction cache-misses and
data cache-misses have been accounted for by
static probabilities so far. Indeed, as algorithmic
details are represented by symbolic instructions, the
real code of the application is not available thus
making state of the art cache models unsuited.
Furthermore, the accuracy of bus and memory
models shall be validated against a real embedded
system. A fair comparison with a real implementation
shall therefore reveal whether a set of parameters
can be found to limit the inaccuracy to a reasonable
percentage. To simplify the modeling of systems
making extensive use of DMA engines, a specific
UML stereotype could be introduced. This way, the
designer would not have to model DMA transfers
explicitly using a dedicated execution unit.

In addition to technical improvements of the
simulator, future work will also include the automatic
exploration of several alternative executions in order
to enhance the simulation coverage. The
exploration of some control flow branches could be
privileged or abandoned based on certain criteria
(CPU usage, resource contention, etc). When taking
into account different executions, recurring system
states should be tracked so as to be able to merge
similar simulation runs.

Regarding formal verification, our environment will
be enhanced with a refinement process from the
application modeling step to the after-mapping step.
The objective is to preserve properties proved at
application level.

7. References

 [1] Daniel Knorreck, Ludovic Apvrille, and Renaud
Pacalet. Fast simulation techniques for design
space exploration. In Objects, Components, Models
and Patterns, volume 33 of Lecture Notes in
Business Information Processing, pages 308-327.
Springer Berlin Heidelberg, 2009

[2] M. Waseem, L. Apvrille, R. Ameur-Boulifa, S.
Coudert, and R. Pacalet. Abstract application
modeling for system design space exploration.
Digital System Design: Architectures, Methods and
Tools, 2006. DSD 2006. 9th EUROMICRO
Conference on, pages 331-337, 0-0 2006

[3] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S.
Coudert, and R. Pacalet. A UML-based
environment for system design space exploration.
Electronics, Circuits and Systems, 2006. ICECS
'06. 13th IEEE International Conference on, pages
1272-1275, Dec. 2006.

[4] TTool, the Turtle Toolkit:
http://labsoc.comelec.enst.fr/turtle

 Page 10/10

[5] Topcased. Topcased, www.topcased.org

[6] Tau. Tau, www-01.ibm.com/software/awdtools/tau

[7] Rhapsody. Rhapsody, www-
01.ibm.com/software/awdtools/rhapsody

[8] Artisan. Artisan studio,
www.artisansoftwaretools.com/products/artisan-
studio

[9] Coware Virtual Platforms www.coware.com.

[10] Vast System Engineering Tools
www.vastsystems.com.

[11] Members of the SystemC Verification Working
Group. SystemC Verification Standard Specification
Version 1.0e, www.systemc.org. 2003.

[12] Bastian Ristau, Torsten Limberg, and Gerhard
Fettweis. A mapping framework for guided design
space exploration of heterogeneous mp-socs.
Design, Automation and Test in Europe, 2008.
DATE '08, pages 780-783, March 2008.

[13] Jorgiano Vidal, Florent de Lamotte, Guy Gogniat,
Philippe Soulard, and Jean-Philippe Diguet. A co-
design approach for embedded system modeling
and code generation with uml and marte. In Design,
Automation & Test in Europe Conference &
Exhibition, 2009. DATE '09., pages 226-231, April
2009.

[14] A. D. Pimentel and S. Polstra and F. Terpstra,
Towards efficient design space exploration of
heterogeneous embedded media systems, In
Embedded Processor Design Challenges: Systems,
Architectures, Modeling, and Simulation, pages 57-
73, Springer LNCS

[15] A.D. Pimentel, C. Erbas, and S. Polstra. A
systematic approach to exploring embedded
system architectures at multiple abstraction levels.
Computers, IEEE Transactions on, 55(2):99-112,
Feb. 2006.

[16] R. Henia, A. Hamann, M. Jersak, R. Racu, K.
Richter, and R. Ernst. System level performance
analysis - the symta/s approach. Computers and
Digital Techniques, IEE Proceedings -, 152(2):148-
166, Mar 2005.

[17] Object Management Group. UML 2.0
Superstructure Specification. 2003

[18] P. Lieverse, P. van der Wolf, E. Deprettere, and K.
Vissers. A methodology for architecture
explorationof heterogeneous signal processing
systems. In Signal Processing Systems, 1999. SiPS
99. 1999 IEEE Workshop on, pages 181-190, 1999.

[19] L. Apvrille and J.-P. Courtiat and C. Lohr and P. de
Saqui-Sannes, TURTLE: A Real-Time UML Profile
Supported by a Formal Validation Toolkit, volume
30 of IEEE transactions on Software Engineering
2004, pages 473-487.

[20] L. Apvrille. TTool for DIPLODOCUS: An
Environment for Design Space Exploration. In Pro-
ceedings of the 8th Annual International
Conference on New Technologies of Distributed
Systems (NOTERE'2008), Lyon, France, June
2008.

[21] S. Chakraborty, S. Kunzli, and L. Thiele. A general
framework for analysing system properties in

platform-based embedded system designs. In
Design, Automation and Test in Europe Conference
and Exhibition, 2003, pages 190-195, 2003.

[22] Arne Hamann, Marek Jersak, Kai Richter, and Rolf
Ernst. A framework for modular analysis and
exploration of heterogeneous embedded systems.
Real-Time Syst., 33(1-3):101-137, 2006.

[23] Tero Arpinen, Erno Salminen, Timo Hämäläinen,
and Marko Hännikäinen. Performance evaluationof
uml2-modeled embedded streaming applications
with system-level simulation. EURASIP Journal on
Embedded Systems, 2009, March 2009.

[24] Jorgiano Vidal, Florent de Lamotte, Guy Gogniat,
Philippe Soulard, and Jean-Philippe Diguet. A co-
design approach for embedded system modeling
and code generation with uml and marte. In Design,
Automation & Test in Europe Conference &
Exhibition, 2009. DATE '09., pages 226-231, April
2009.

[25] D. Knorreck, L. Apvrille, R. Pacalet Formal System-
level Design Space Exploration. In Pro-ceedings of
the 10th Annual International Conference on New
Technologies of Distributed Systems
(NOTERE'2010), Tozeur, Tunisia, June 2010 (to
appear).

[26] P. Lieverse, P. van der Wolf, E. Deprettere, and K.
Vissers. A methodology for architecture exploration
of heterogeneous signal processing systems. In
Signal Processing Systems, 1999. SiPS 99. 1999
IEEE Workshop on, pages 181-190, 1999.

