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Abstract: This article presents an interactive 
simulation environment for high level models 
intended for Design Space Exploration of Systems-
On-Chip. The existing open source development 
environment TTool supports the MARTE compliant 
UML profile DIPLODOCUS and enables the 
designer to create, simulate and formally verify 
models. The goal is to obtain first performance 
estimations of the system intended for design while 
minimizing the modeling effort. The contribution 
outlined in this paper is an additional module 
providing means for controlling the simulation in real 
time by performing step wise execution, saving and 
restoring simulation states as well as animating UML 
models of the system. Moreover the paper 
elaborates on the integration of these new features 
into the existing framework consisting of a simulation 
engine on the one hand and a graphical user 
interface on the other hand. 
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1. Introduction 

A System-on-Chip can be defined as a set of 
communicating electronic components integrated 
into one single chip. The latter components are 
highly heterogeneous in nature: digital, analog and 
mixed signal components may be interconnected to 
make up complex systems ranging from mobile hand 
sets and set top boxes to automotive controllers and 
feedback control systems for rail cars. Due to recent 
advances in the field of semiconductor physics, 
higher and higher integration densities are achieved 
so that a given piece of silicon accommodates more 
and more transistors.  
 
In order to make use of the available resources, the 
complexity of embedded systems and Systems-on-
Chip has been increasing rapidly. On the one hand, 
users are demanding products exhibiting 
sophisticated features which are reliable, easy to use 
and affordable. On the other hand, the gap 
increases between integration and designer 
efficiency due to inadequate tools and 

methodologies. In addition to the increased demand 
of functionality, time-to market is an issue of great 
concern. Hence, developers are facing significant 
difficulties due to an exponentially raising complexity. 
It becomes more and more unlikely that an optimal 
design represents an intuitive solution, thus the 
experience of the designer may not lead him/her to 
optimal designs with respect to functional and non-
functional requirements such as performance, size, 
energy consumption, reliability. 
 
Thus, given a particular functionality and associated 
requirements, the design space is considered as 
representing all functionally equivalent 
implementation alternatives. Being almost infinitely 
large at the very beginning of the design flow, the 
design space should be gradually reduced during 
the design process by refining the model of the 
system. The analysis of systems at low abstraction 
levels exhibits a high degree of accuracy but comes 
with the downside of being demanding and slow. 
Traditional simulation techniques operating at 
register transfer level (RTL), instruction or 
transaction level are not appropriate for system level 
Design Space Exploration (DSE) for two reasons: 
• Only a very limited number of implementation 

alternatives can be examined due to the high 
modeling effort and extensive simulation 
runtime. 

• The lack of specification at early design stages 
may prohibit the construction of detailed models 
- even if the effort was acceptable. 

 
Thus, abstractions are the key to success in 
performing System Level Design. In this context, we 
have previously introduced a UML-based 
environment named DIPLODOCUS. The strength of 
our approach relies on formal verification capabilities 
and fast simulation techniques ([2] [3]). 
DIPLODOCUS design approach is based on the 
following fundamental principles: 
• Use of a high level language (UML) 
• Clear separation between application and 

architectural matters 
• Data abstraction 
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• Use of fast simulation and formal static analysis 
techniques, both at application and mapping 
levels 

 
The designer is supposed to model in an orthogonal 
fashion the application and the architecture of the 
targeted system. Thereafter, a mapping stage 
associates application and architectural components. 
The strength of our approach relies in simulation and 
formal proofs techniques that can be applied to 
modeled systems at all methodological stages. UML 
application models can be simulated with 
respect to the underlying hardware, as opposed 
to state of the art UML model simulators which 
operate on a purely functional level. Feedback from 
the simulation is directly visualized within the 
application model by for instance highlighting the 
currently executed operators. This feature paves the 
way for getting an intuitive insight into the behavior 
of application models on different hardware 
architectures. Simulation states may be saved and 
restored so as to explore several possible 
executions and branches of non-deterministic 
decision operators can be explicitly selected by 
the user. Also, our environment totally hides 
knowledge of simulation or formal proofs techniques: 
knowledge of our UML profile is the only asset for 
engineers. Today, this methodology is supported by 
an open-source toolkit named TTool [4].  
 
The paper is organized in 6 sections. Section 2 
surveys related work in the field of System Level 
Modeling and UML model simulation. Section 3 
elaborates on the DIPLODOCUS methodology and 
its tooling. Section 4 details the simulation strategy 
which is embedded into the development 
environment TTool. Section 5 gives insights into the 
features and the technical realization of the 
interactive simulation environment. Section 6 finally 
concludes the paper and draws perspectives of 
future work. 

2. Related Work 

Some of the current state of the art UML modeling 
tools ([5], [6], [7], [8] amongst others) exhibit 
simulation capabilities. Simulations can only be 
performed based on purely functional models in an 
untimed fashion. Our interactive simulator however 
also accounts for architecture semantics like 
arbitration of shared resources, speed or data 
throughput of devices, etc. Furthermore, the 
execution behavior of models is tool dependent as 
the UML standard lacks an execution semantics. 
The DIPLODOCUS profile however fills that 
semantic gap and thus also paves the way for formal 
verification. 

Related work in the field of system level modeling 
and simulation often suffers from one of the following 

problems: Off the shelves solutions like [10] and [9] 
mostly do not permit an orthogonalization of 
functionality and architecture. Detailed RTL models 
of HW components and the final software code must 
be at hand to perform co-simulation. For instance, 
Instruction Set Simulators are often used to estimate 
the impact on performance of software execution on 
a specific processor. Thus, only little abstraction may 
be applied to communication (SystemC TLM [11], 
etc) and computations. Some academic approaches 
enable the design of distinct models for architecture 
and application ([12], [13], [14], [15], [24]). In this 
case, the level of abstraction is often not pushed 
high enough to explore a representative subset of 
the HW/SW design space in a reasonable time. 
Sometimes application models do not exhibit 
data/functional abstractions. In other cases, the 
simulation strategy does not leverage abstractions 
and models have to be refined before being 
executable. For instance, [23] bears resemblance 
with our approach with respect to the modeling 
methodology where UML is applied for architecture, 
application and mapping models. As opposed to our 
framework, the focus is put on streaming 
applications exhibiting only occasional control 
messaging and branching. For this reason, the 
semantics of Kahn Process Networks has been 
adopted for application models. Simulation is carried 
out on SystemC TLM level, thus it does not leverage 
all abstraction applied at the modeling stage. 

Analytical approaches like [21] and [16], [22] rely on 
the classical methods for real-time scheduling 
analysis to determine characteristics of distributed 
systems. The behavior of the environment is 
modeled by means of standard event arrival patterns 
including periodic and sporadic events with jitters or 
bursts. The main contribution is the extension of the 
scope of well-known scheduling theories for mono-
processors. Event streams are propagated among 
resources of distributed systems in a way that each 
resource may be analyzed separately with classical 
algorithms. However, the applicability of scheduling 
theories requires the task model to be simplistic and 
thus it merely reflects best case and worst case 
execution times. Control flow within tasks cannot be 
considered at all. It may be tedious if not impossible 
to model tasks exhibiting a data dependent or 
irregular behavior. 

The DIPLODOCUS environment however relies on 
data and functional abstractions to leverage fast 
simulation techniques. Nevertheless, the application 
model captures different control flow branches and 
explicitly models indeterminism. The latter property 
enables the developer to smoothly vary the coverage 
of the model during simulation. Explicit 
indeterminism also makes model amenable to both 
formal verification. 



 Page 3/10 

3. The DIPLODOCUS UML Profile and Tooling 

DIPLODOCUS is a UML profile targeting the design 
of Systems-on-Chip at a high level of abstraction. A 
UML profile customizes UML [17] for a given 
domain, using UML extension capabilities. 
Furthermore, a UML profile commonly provides a 
methodology and is supported by a specific toolkit. 

 
3.1 Methodology 

 

DIPLODOCUS follows the Y-Chart methodology [26] 
and is therefore characterized by the following three-
step design flow (see Figure 1): 

• Applications are first described as a network of 
abstract communicating tasks using a UML class 
diagram. The latter represents the static view of 
the application. Each task behavior is described 
with a UML activity diagram. 

• Targeted architectures are modeled 
independently from applications as a set of 
interconnected generic hardware nodes. The 
latter may be parametrized to exhibit a more 
specific behavior. UML nodes were defined to 
model HW elements (e.g. CPUs, buses, 
memories, hardware accelerators, bridges). 

• A mapping process defines how application 
tasks can be bound to execution entities and 
also how abstract communications between 
tasks are assigned to communication and 
storage devices.  
 

 

Figure 1: Global view of the Design Space Exploration 
methodology 

Within a SoC design flow, Design Space Exploration 
is supposed to be carried out at a very early stage. 
Hence, the main DIPLODOCUS objective is to help 
designers to spot a suitable hardware architecture 
even if algorithmic details have not yet been 
stipulated thoroughly. To achieve this, 
DIPLODOCUS relies (i) on fast simulation and 
formal proof techniques, both at application and 
mapping level, and (ii) on application models clearly 

separated from architecture models (also referred to 
as Y-Chart approach [18]). Due to the high 
abstraction level of both application and architecture 
models, simulation speed can be increased 
significantly with regards to simulations usually 
performed at lower abstraction level (e.g. TLM level, 
RTL level, etc.). Additionally, efficient formal static 
analysis techniques may be applied before and after 
mapping [25]. 

 

3.2 Application Modeling 

 

An application model is the description of functions 
to be performed by the targeted SoC. As it merely 
stipulates a partial ordering of actions, a refined 
execution semantics is introduced at the mapping 
stage. One has to bear in mind that, at application 
modeling level, computations and communication 
are accounted for by abstract cost operators. The 
time it takes to process the latter can only be 
resolved with the aid of parameters which are 
annotated to the architecture model. Abstract cost 
operators entail two kinds of abstractions which 
reflect the degree of uncertainty inherent to early 
design stages: 

• Data abstraction: Only the amount of 
transferred data is taken into account, not the 
data itself. 

• Functional abstraction: Algorithmic details are 
abstracted by means of their complexity 
operators.  

As mentioned before, functions are modeled as a set 
of abstract tasks described within UML class 
diagrams. Task behavior is modeled using UML 
activity diagrams which are built upon the following 
operators: control flow and variable manipulation 
operators (loops, tests, assignments, etc.), 
communication operators (reading/writing abstract 
data samples in channels, sending/receiving events 
and requests), computational cost operators and 
delay operators. This section briefly describes a 
subset of the aforementioned operators as well as 
their semantics and provides definitions for 
Channels, Events and Requests: 

Channels are characterized by a point-to-point 
unidirectional communication between two tasks. 
The following Channel types exist: 

• Blocking Read/Blocking Write (BR-BW) 

• Blocking Read/Non Blocking Write (BR-NBW) 

• Non Blocking Read/Non Blocking Write (NBR-
NBW) 

Events are characterized by a point-to-point 
unidirectional asynchronous communication between 
two tasks. Events are stored in an intermediate FIFO 
between the sender and the receiver. This FIFO may 
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Figure 2: Modeling and verification capabilities of TTool 

be finite or infinite. In case of an infinite FIFO, 
incoming events are never lost. When adding an 
event to a finite FIFO, the incoming event may be 
discarded or the oldest event may be dropped if the 
FIFO is full. Thus, a single element FIFO may be 
used to model hardware interrupts. In tasks, events 
can be sent (NOTIFY), received (WAIT) and tested 
for their presence (NOTIFIED). 
Requests are characterized by a multi-point to one 
point unidirectional asynchronous communication 
between tasks. A unique infinite FIFO between 
senders and the receiver is used to store all 
incoming requests. Consequently, a request cannot 
be lost. 

 

3.3 Architecture Modeling 

 

A DIPLODOCUS architecture is built upon the 
following parameterized hardware nodes: 

• Computation nodes: Typically, an abstract 
CPU model merges both the functionality of the 
hardware component and its Operating System. 
The behavior of a CPU model can be 
customized by the following parameters 
(amongst others): data size, pipeline size, 
cache miss ratio and scheduling algorithm. 

• Communication nodes: A communication 
node is either a bus or a bridge. The bus model 
exhibits the following parameters: data size, 
latency and scheduling policy. Note that links 
which are established during the mapping stage 
are meant to interconnect a hardware node - 
except for buses - with a bus. A link may be 
annotated by a priority if the respective bus has 

a priority-based scheduling policy. 

• Storage nodes: Memories are parametrized by 
two measures: latency and data size. 

A DIPLODOCUS architecture is modeled in terms of 
a UML deployment diagram where DIPLODOCUS 
links and DIPLODOCUS nodes are depicted by their 
corresponding UML counterparts. 

 

3.4 Mapping of Applications on Architectures 

 

A DIPLODOCUS mapping is meant to describe the 
association of application elements - i.e. tasks, 
channels, requests and events - and hardware 
nodes. Thereby the following rules apply: 

• Abstract tasks must be mapped onto exactly 
one computation node. 

• Abstract communication entities must be 
mapped onto communication and storage 
nodes. For the time being, the simulation 
engine stipulates that a channel is mapped onto 
n buses, n-1 bridges and exactly one storage 
element. Furthermore, all connected 
communication links have to form a continuous 
path without loops. A future version of the 
simulator should support several memory 
elements per channel. 

Depending on the mapping semantics, additional 
parameters may become necessary. For example, 
when mapping a task on a CPU node having a 
priority-based scheduling policy, task priorities have 
to be defined. 

The mapping stage is carried out based on 
previously created DIPLODOCUS architecture 
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diagrams: symbols representing tasks and channels 
are simply bound to hardware components in a drag 
and drop fashion. An application model captures all 
possible interleavings of task activities: the mapping 
phase resolves those interleavings which are not 
related to non-deterministic operators (choices, time 
intervals, etc.). As a consequence, mapping models 
have less possible execution traces than application 
models  

 

3.5 Toolkit 

 

The DIPLODOCUS UML profile - including its 
methodology - has been implemented in TTool [4]. 
TTool is an open-source toolkit that supports several 
UML2/SysML profiles, including TURTLE [19] and 
DIPLODOCUS [20]. The main idea behind TTool is 
that all models may be formally verified or simulated. 
In practice, UML diagrams are first automatically 
translated into an intermediate specification 
expressed in a formal language, which serves as 
starting point for deriving formal specifications and 
simulation code (compare Figure 2). Based on the 
three building blocks (mapping, application, 
architecture), TTool automatically generates 
simulation code (C++) or formal specifications at the 
push of a button. The module which allows the 
designer to control the simulation in real time by 
performing step wise execution, saving and restoring 
simulation states as well as providing live feedback 
to UML diagrams will be elaborated in section 5.  

4. The Simulation Strategy 

 

Before going into details, it should be clearly 
emphasized what we understand by fast simulation. 
Our fast simulation approach is 
centered around two basic principles:  

• A modeling methodology which 
allows for conceiving abstract 
application models by applying 
both data and functional 
abstractions. 

• A simulation strategy which 
efficiently exploits these 
characteristics of the high level 
model. The granularity of the 
simulation thereby matches the 
granularity of the application 
model.  

This implies that the gain in terms of 
simulation speed can hardly be 
expressed in cycles per second as it 
highly depends on the application 
model. Indeed, in theory the simulator 
could attain any ratio of cycles/second 

if transactions were sufficiently large. But in this case 
the respective model would be far from reflecting key 
characteristics of the real system for lack of 
detailedness. The trade-off between detailedness 
and simulation speed is still subject to our research 
and can be varied smoothly thanks to the simulation 
environment. 

When experimenting with models such the one of an 
MPEG2 decoder, simulation speed increased by 
factor 30 as compared to a cycle-based SystemC 
simulator [1]. A car communication application where 
we experienced a simulation speed up to 30 times 
faster than real time may be also considered as a 
rough guide. 

The simulator detailed in this paper is transaction-
based. A transaction refers to a computation internal 
to a task, or a communication between tasks. Those 
transactions may obviously span up to hundreds of 
clock cycles. The duration of transactions is initially 
defined according to the application model, that is to 
say the maximum duration is given by the length of 
the corresponding operator within the task model. At 
simulation runtime, a transaction may have to be 
broken down into several chunks of smaller size, just 
because for example, a bus is not accessible and so 
the task is put on I/O wait on its CPU. Transaction 
cutting is more likely to happen if the amount of inter 
task communication is high and hence the need for 
synchronization arises. The aggregation of cycles 
may slightly impact simulation semantics when 
incorrect branch predictions arise on CPUs. The 
exact point in time of their occurrence cannot be 
resolved and thus the resulting delay is determined 
on a per-transaction base. 

Unlike a conventional simulation strategy where all 
tasks run in lockstep, a local simulation clock is 
assigned to each active hardware component. The 
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simulation clock of a component is advanced upon 
reception of a transaction whose length is initially set 
to the cost of the corresponding operator defined 
within the application model. Thus, the simulation 
granularity automatically adapts to the application 
granularity. In case the application model is abstract 
in the sense of aggregating costs in only few 
operators, simulation performance increases 
significantly.  

The transaction based simulation embraces mainly 
three layers (compare Figure 3) representing the 
semantics of the application model, the semantics of 
the underlying execution platform and finally a layer 
dedicated to the discrete event simulation itself. The 
topmost layer is subdivided into two parts: the first 
one accounting for the computational part of abstract 
tasks, the second one for the communication 
semantics of abstract channels. Based on the 
knowledge of their internal behavior, tasks are able 
to determine the next operation which has to be 
executed within their scope. The abstract cost of this 
command (in terms of computation or 
communication units) is subsequently encapsulated 
in a transaction data structure. The latter is tagged 
with the earliest possible start time (which 
corresponds to the finish time of previous transaction 
of the task). In case the system is dealing with 
communication or synchronization commands, 
transactions are forwarded to the dedicated layer for 
abstract channels. This layer takes into account 
constraints imposed by the channel semantics like 

the maximum number of samples to b4e stored, the 
blocking behavior, etc.  

The hardware layer can be decomposed in the same 
manner as the model layer (as depicted in Figure 3): 
execution hardware elements (CPUs and hardware 
accelerators) and communication elements (bridges, 
buses, memories) alter the time stamp of 
transactions initially defined at the task layer. The 
basic idea is that this timing information is used to 
update the internal clock of hardware elements. 
Time stamps thus serve as means of 
synchronization among the local clocks of hardware 
elements. More precisely, on time management, 
CPUs have to recalculate the start time of 
transactions based on their internal schedule and 
they are able to convert the abstract length to time 
units. Moreover, a hardware component may delay 
transactions and modify their duration according to 
the execution time needed by that specific 
component. In so doing, the simulation algorithm 
accounts for the speed of CPUs, the data rate of 
buses, bus contention and other parameters 
characterizing the hardware configuration. If several 
devices are involved in the execution process, 
transactions are simply passed from one device to 
another while being modified accordingly. This 
procedure is for instance applied if an abstract 
channel at application level is mapped onto several 
buses and bridges. 
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The final values for start time and duration are hence 
determined incrementally by forwarding transactions 
to dedicated hardware nodes. Finally, the main 
scheduler acts as a discrete event simulator and 
assures the causality of the simulation. This is 
achieved by simply querying all CPUs for their next 
transaction and selecting for execution the 
transaction with the earliest finish time. 

5. Interactive Simulation Environment 

5.1 Usage and features 

The above mentioned simulation environment has 
been enhanced and it henceforth allows for an 
interactive exploration of the application which is 
mapped onto a particular architecture. After having 
developed the static view of the application in terms 
of classes, the behavioral view, the architecture and 
the mapping, the developer first checks the syntax of 
the models. If the models comply to the constraints 
of the meta-model, the next stage is to generate the 
C++ counterpart of the graphical model. Once the 
sources have been compiled, the interactive 
simulation module is launched. All of the 
aforementioned stages are accomplished at the 
push of a button. No expertise in C++ programming, 
simulation or formal verification (in case the model 
should be verified) is required. The starting point for 
an interactive exploration is hence the window 
depicted in Figure 4.  

The interface provides the following simulation 
commands: 

• Different flavors of run commands: a given 
amount of transactions, commands or time units 
can be simulated... 

• …likewise the simulation may be interrupted 
when a particular hardware element (CPU, bus, 
bridge, memory) or an application entity 
(channel) processes a transaction. 

• Reset the simulation to the initial state. 

• Save and restore the simulation state, especially 
useful when several branches of control flow are 
to be looked into.  

• Simulation traces may be provided in several 
formats: the text based format is a simple listing 
of all transactions encountered on a hardware 
component This format enables the automatic 
evaluation of traces and the interchange of data 
with other applications. The VCD format is 
supported for the sake of compatibility with 
standard waveform viewers. The VCD output 
basically captures bus states (read, write, idle), 
task states (ready, running, blocked, 
terminated), CPU states (executing, idle, sleep 
mode). For debugging purposes of small 
designs, a user friendly HTML output may give 
an insight into the application’s behavior. 
Transactions are represented on a time line for 
each hardware component and colored 
according to the task they belong to. Figure 6 
and 7 show the available output formats. 
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• Breakpoints can be set graphically on any 
command within the UML activity diagram simply 
by selecting a dedicated option in the context 
menu. Two kinds of breakpoints are supported:  
conditional and unconditional breakpoints. 
Unconditional breakpoints stop the simulation 
whenever the respective command within the 
activity diagram is reached. Conditional 
breakpoints interrupt the simulation as soon as a 
condition is fulfilled which is a function of task 
variables.  

• Furthermore, commands aiming at obtaining 
information about the simulation state and the 
state of application and hardware components. 
The user is not aware of the existence of these 
commands as they merely serve as a vehicle to 
convey information to the graphical user 
interface. 

• Commands may also be supplied directly in text 
format, without using the graphical interface at 
all. Thus, scripts can be written to automate the 
simulation procedure. 

 

TTool encompasses a graphical interface to direct 
the simulation (shown in Figure 4) and thus 
unburdens the user from familiarizing with a low-
level simulation language. The feedback from the 
simulation engine is exploited by the graphical user 
interface and used to animate UML application 
diagrams. For instance, the current command of a 
task is highlighted so that the user is able to closely 
follow the simulation progress.  

 

 
 

 

 
 

In addition to traces, simulation results comprise 
performance figures like the utilization of hardware 
elements, the contention delay for bus masters, the 

execution time of tasks, the average time a task gets 
blocked due to CPU contention, etc (compare Figure 
8). 

 

 
 

 

5.2 Technical Issues 

 

As illustrated in figure 5, the simulator and the 
graphical user interface embedded in TTool are 
hosted in different processes communicating via a 
TCP connection. Therefore, the simulator and the 
graphical user interface can be run on different 
machines for the sake of performance. To get a 
better understanding of this interaction, let us now 
follow a user request which aims at defining a 
breakpoint. The user selects the option by clicking 
on the respective command within the UML activity 
diagram. In turn, the logic of the graphical user 
interface identifies the concerned command and 
signals a modification to the TTool client. The latter 
may perform additional checks and wraps 
information about the command (its ID,…) and the 
request into a message in text format. The message 
is sent over the network and received by the server 
thread of the simulator. The latter distinguishes so 
called synchronous and asynchronous requests. 
Asynchronous requests may be issued at any time 
and normally request information about the 
simulation without altering the simulation state. 
Asynchronous requests are handled in the scope of 
the server thread. Synchronous requests however 
directly impact the simulation state and must 
therefore be processed in order. Our breakpoint 
request is considered as such. Synchronous 
commands are carried out by the simulator thread 
which reads the FIFO entries one after another. In 
case of the breakpoint request, the simulator 
updates internal data structures accordingly and 
notifies the successful breakpoint insertion to the 
server. The server in turn encapsulates the reply into 
an XML message and sends it over the network. The 
TTool client subsequently interprets the message 
and informs the graphical user interface. The latter 
provides a feedback to the user indicating that the 
breakpoint has been set successfully.  

Figure 6: Traces in VCD Format 

Figure 7: Traces in HTML Format 

Figure 8: Simulation Results 
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As stated previously, conditional breakpoints are 
intended to stop the simulation as soon as a 
condition (a function of task variables) evaluates to 
true. To deal with this kind of breakpoints, the 
simulator has to generate a C++ routine first which is 
subsequently compiled and attached to the process 
in the form of a dynamic library. This procedure 
prevents the cumbersome and costly interpretation 
of conditions at simulation runtime. 

 

5.3 Usage Scenario 

 

As a simple example, let us consider an algorithm 
having two main branches which significantly differ in 
terms of execution time and resource usage in 
general. For the performance evaluation of a specific 
architecture, it would be crucial to try out both 
alternatives. Hence, the coverage of the simulation 
should be enhanced. As a first step, the designer 
could benefit from the various conditional run 
commands so as to get a more intuitive view of the 
behavior of the application and the interaction of 
hardware components. The next step could be to 
reset the simulation and to set a breakpoint on the 
branch command which is crucial for the 
continuation of the simulation. The simulation will 
stop at the previously defined choice command 
therefore allowing the user to specify which branch 
he means to explore. In combination with the feature 
of capturing simulation states, complex scenarios 
can be evaluated and meaningful traces be 
recorded. In our example, the user would certainly 
save the simulation state when reaching the choice 
command so that it can be restored to study other 
alternative executions. 

6. Conclusions and perspectives 

In conclusion it can be said that the contribution of 
this paper is on the one hand the extension of our 
simulation environment with a module providing an 
interactive control of the simulation procedure. On 
the other hand, the new simulation features have 
been tightly coupled to our integrated development 
environment TTool so that simulation progress is 
directly visualized within the UML diagrams 
representing the application model. Thus, a powerful 
toolbox is provided to the designer which is helpful 
when performing Design Space Exploration. It may 
alleviate considerably the process of 

• Debugging applications 

• Accessing intermediate simulation results 

• Returning to previous system states 

• Enhancing the coverage of the simulation by 
exploring several control flow branches. 

Trading off accuracy against model complexity of 
hardware components will remain subject to our 
research. For example, instruction cache-misses and 
data cache-misses have been accounted for by 
static probabilities so far. Indeed, as algorithmic 
details are represented by symbolic instructions, the 
real code of the application is not available thus 
making state of the art cache models unsuited. 
Furthermore, the accuracy of bus and memory 
models shall be validated against a real embedded 
system. A fair comparison with a real implementation 
shall therefore reveal whether a set of parameters 
can be found to limit the inaccuracy to a reasonable 
percentage. To simplify the modeling of systems 
making extensive use of DMA engines, a specific 
UML stereotype could be introduced. This way, the 
designer would not have to model DMA transfers 
explicitly using a dedicated execution unit. 

In addition to technical improvements of the 
simulator, future work will also include the automatic 
exploration of several alternative executions in order 
to enhance the simulation coverage.  The 
exploration of some control flow branches could be 
privileged or abandoned based on certain criteria 
(CPU usage, resource contention, etc). When taking 
into account different executions, recurring system 
states should be tracked so as to be able to merge 
similar simulation runs. 

Regarding formal verification, our environment will 
be enhanced with a refinement process from the 
application modeling step to the after-mapping step. 
The objective is to preserve properties proved at 
application level. 
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